Solving the guiding-center model on a regular hexagonal mesh

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the guiding-center model on a regular hexagonal mesh

This paper introduces a Semi-Lagrangian solver for the Vlasov-Poisson equations on a uniform hexagonal mesh. The latter is composed of equilateral triangles, thus it doesn’t contain any singularities, unlike polar meshes. We focus on the guiding-center model, for which we need to develop a Poisson solver for the hexagonal mesh in addition to the Vlasov solver. For the interpolation step of the ...

متن کامل

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

Mirrors with regular hexagonal segments.

The point-spread function and emissivity are calculated for a mirror made from regular hexagonal segments of just a few different sizes. A mirror of this type has many similar segments, which is an advantage for manufacturing, and for an approximately f/1 mirror with > or = 1000 segments and > or = 4 sizes of regular hexagons the increase in intersegment gap area is negligible. This result rais...

متن کامل

Guiding-center simulations on curvilinear meshes

The purpose of this work is to design simulation tools for magnetised plasmas in the ITER project framework. The specific issue we consider is the simulation of turbulent transport in the core of a Tokamak plasma, for which a 5D gyrokinetic model is generally used, where the fast gyromotion of the particles in the strong magnetic field is averaged in order to remove the associated fast time-sca...

متن کامل

Guiding center simulations on curvilinear grids

Semi-Lagrangian guiding center simulations are performed on sinusoidal perturbations of cartesian grids, and on deformed polar grid with different boundary conditions. Key ingredients are: the use of a B-spline finite element solver for the Poisson equation and the classical backward semi-Lagrangian method (BSL) for the advection. We are able to reproduce standard Kelvin-Helmholtz and diocotron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Proceedings and Surveys

سال: 2016

ISSN: 2267-3059

DOI: 10.1051/proc/201653010